U
    cc                     @   st   d Z dddZdddZdd Zd	d
 Zdd Zdd Zdd ZdddZdddZ	dddZ
d ddZdd ZdS )!zE
Built-in datasets for demonstration, educational and test purposes.
FNc                 C   s   t d}|r||d |k }| r<|d td d|d< |sR|jddgdd}|r~|jtd	d
ddddddddd
ddd |S )a  
    Each row represents a country on a given year.

    https://www.gapminder.org/data/

    Returns:
        A `pandas.DataFrame` with 1704 rows and the following columns:
        `['country', 'continent', 'year', 'lifeExp', 'pop', 'gdpPercap',
        'iso_alpha', 'iso_num']`.
        If `datetimes` is True, the 'year' column will be a datetime column
        If `centroids` is True, two new columns are added: ['centroid_lat', 'centroid_lon']
        If `year` is an integer, the dataset will be filtered for that year
    	gapminderyearz-01-01datetime64[ns]centroid_latcentroid_lon   )axisZCountryZ	ContinentZYearzLife ExpectancyzGDP per CapitaZ
PopulationzISO Alpha Country CodezISO Numeric Country CodezCentroid LatitudezCentroid Longitude)
ZcountryZ	continentr   ZlifeExpZ	gdpPercappopZ	iso_alphaZiso_numr   r   columnsTZmapperr   Zinplace)_get_datasetastypestrZdroprenamedict)	datetimesZ	centroidsr   pretty_namesdf r   N/var/www/html/project/venv/lib/python3.8/site-packages/plotly/data/__init__.pyr      s2    r   c              
   C   s2   t d}| r.|jtdddddddd	d
dd |S )a  
    Each row represents a restaurant bill.

    https://vincentarelbundock.github.io/Rdatasets/doc/reshape2/tips.html

    Returns:
        A `pandas.DataFrame` with 244 rows and the following columns:
        `['total_bill', 'tip', 'sex', 'smoker', 'day', 'time', 'size']`.tipsz
Total BillZTipzPayer GenderzSmokers at TablezDay of WeekZMealz
Party Size)Z
total_billZtipZsexZsmokerdaytimesizer	   Tr
   )r   r   r   )r   r   r   r   r   r   /   s     
	r   c                   C   s   t dS )a  
    Each row represents a flower.

    https://en.wikipedia.org/wiki/Iris_flower_data_set

    Returns:
        A `pandas.DataFrame` with 150 rows and the following columns:
        `['sepal_length', 'sepal_width', 'petal_length', 'petal_width', 'species', 'species_id']`.irisr   r   r   r   r   r   K   s    	r   c                   C   s   t dS )z
    Each row represents a level of wind intensity in a cardinal direction, and its frequency.

    Returns:
        A `pandas.DataFrame` with 128 rows and the following columns:
        `['direction', 'strength', 'frequency']`.windr   r   r   r   r   r   W   s    r   c                   C   s   t dS )a"  
    Each row represents voting results for an electoral district in the 2013 Montreal
    mayoral election.

    Returns:
        A `pandas.DataFrame` with 58 rows and the following columns:
        `['district', 'Coderre', 'Bergeron', 'Joly', 'total', 'winner', 'result', 'district_id']`.electionr   r   r   r   r   r   a   s    r   c               	   C   sj   ddl } ddl}ddl}|j|j|jtddd}| |d}||	 
d}W 5 Q R X |S )a0  
    Each feature represents an electoral district in the 2013 Montreal mayoral election.

    Returns:
        A GeoJSON-formatted `dict` with 58 polygon or multi-polygon features whose `id`
        is an electoral district numerical ID and whose `district` property is the ID and
        district name.    Npackage_datadatasetszelection.geojson.gzrzutf-8)gzipjsonospathjoindirname__file__GzipFileloadsreaddecode)r!   r"   r#   r$   fresultr   r   r   election_geojsonl   s    r.   c                   C   s   t dS )a!  
    Each row represents the availability of car-sharing services near the centroid of a zone
    in Montreal over a month-long period.

    Returns:
        A `pandas.DataFrame` with 249 rows and the following columns:
        `['centroid_lat', 'centroid_lon', 'car_hours', 'peak_hour']`.carsharer   r   r   r   r   r/      s    r/   c                 C   s8   t d}|r|d d|d< | r4|d}d|j_|S )a  
    Each row in this wide dataset represents closing prices from 6 tech stocks in 2018/2019.

    Returns:
        A `pandas.DataFrame` with 100 rows and the following columns:
        `['date', 'GOOG', 'AAPL', 'AMZN', 'FB', 'NFLX', 'MSFT']`.
        If `indexed` is True, the 'date' column is used as the index and the column index
        If `datetimes` is True, the 'date' column will be a datetime column
        is named 'company'stocksdater   Zcompany)r   r   	set_indexr	   name)indexedr   r   r   r   r   r0      s    

r0   c                 C   s   t d}| rd|j_|S )a  
    Each row in this wide dataset represents the results of 100 simulated participants
    on three hypothetical experiments, along with their gender and control/treatment group.


    Returns:
        A `pandas.DataFrame` with 100 rows and the following columns:
        `['experiment_1', 'experiment_2', 'experiment_3', 'gender', 'group']`.
        If `indexed` is True, the data frame index is named "participant" 
experimentZparticipant)r   indexr3   r4   r   r   r   r   r5      s    
r5   c                 C   s"   t d}| r|d}d|j_|S )au  
    This dataset represents the medal table for Olympic Short Track Speed Skating for the
    top three nations as of 2020.

    Returns:
        A `pandas.DataFrame` with 3 rows and the following columns:
        `['nation', 'gold', 'silver', 'bronze']`.
        If `indexed` is True, the 'nation' column is used as the index and the column index
        is named 'medal'medalsnationmedal)r   r2   r	   r3   r7   r   r   r   medals_wide   s
    

r;   c                 C   s(   t djdgddd}| r$|d}|S )a>  
    This dataset represents the medal table for Olympic Short Track Speed Skating for the
    top three nations as of 2020.

    Returns:
        A `pandas.DataFrame` with 9 rows and the following columns:
        `['nation', 'medal', 'count']`.
        If `indexed` is True, the 'nation' column is used as the index.r8   r9   countr:   )Zid_varsZ
value_namevar_name)r   Zmeltr2   r7   r   r   r   medals_long   s    	  
r>   c              	   C   s<   dd l }dd l}||j|j|jtdd| d S )Nr   r   r   z.csv.gz)pandasr#   Zread_csvr$   r%   r&   r'   )dr?   r#   r   r   r   r      s    r   )FFNF)F)FF)F)F)F)__doc__r   r   r   r   r   r.   r/   r0   r5   r;   r>   r   r   r   r   r   <module>   s   
)





